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Abstract

This paper generalizes the results of Siegel (2009, 2010) to accommodate performance

spillovers, with which a player’s performance in a contest may affect the performance cost

of another player. More precisely, we show that, if for any player, the spillovers from other

players’ performance enter his cost in an additively separable form, then an all-pay contest

has a unique Nash equilibrium. Moreover, we construct the equilibrium payoffs and strate-

gies. Both the equilibrium uniqueness and construction are generalized to multiplicatively

separable spillovers in a two-player contest.

JEL classification: D72, D44, L22
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1 Introduction

Performance spillovers are prevalent in contest situations. For example, higher expenditure

from a lobbyist may make it easier for another lobbyist to justify his expenditure; a company’s

R&D effort may benefit its rivals, and hard working classmates make it easier, or less costly,

for an individual student to study hard. Siegel (2009, 2010) studies contests among asymmetric

players without spillovers, and Baye, Kovenock and de Vries (2012) study contests between two

symmetric players with spillovers. The two setups demonstrate different equilibrium properties.

For example, an asymmetric contest without spillovers has a unique Nash equilibrium, while a

symmetric contest with spillovers may have one or more Nash equilibria depending on parameter

values. To bridge the gap between these studies, this paper investigates contests that allow

spillovers among asymmetric players.

Specifically, we introduce two types of spillovers in contests: additive and multiplicative.

With additive spillovers, the other players’ performance levels enter a player’s cost function

in an additively separable way. For example, given the other player’s performance sj , player
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to improve the paper’s content and exposition. Financial support from the University of Melbourne is greatly
appreciated.
†Department of Economics, University of Melbourne. E-mail: jun.xiao@unimelb.edu.au.
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i’s cost of performance si is Ci(si, sj) = si − s̄, which means player i’s cost depends on not

only his own performance but also the average performance s̄ = (si + sj)/2. As a result,

player j’s performance affects i’s cost through the average performance.1 This is an aggregate

game with linear structure. Linear models with aggregate performance are widely used in

empirical studies of spillovers in innovation (e.g. Audretsch and Feldman (1996)), workplaces

(e.g. Mas and Moretti (2009)) and education (e.g. Angrist (2014)). Acemoglu and Jensen (2013)

provide a theoretic study on spillovers through the average or aggregate action in more general

competitions. These studies focus on competitions that are not based on performance ranking,

so those competitions are different from contests.

With multiplicative spillovers, the other players’ performance levels affect one player’s

performance cost in a multiplicatively separable way. An example of such cost functions is

Ci(si, sj) = s̄si, which means the average performance s̄ affects the marginal cost of player

i’s performance si.
2 Production functions with such a multiplicative form are used in studies

of spillovers in R&D (e.g. Griliches (1991)) to capture the aggregate knowledge’s effect on an

individual firm’s marginal productivity. They are also used in studies of more general social

interactions, e.g., Glaeser, Scheinkman and Sacerdote (2003).

If we introduce performance spillovers into a contest, the original equilibrium strategies

may no longer be an equilibrium.3 However, we show that all-pay contests with additive or

multiplicative spillovers have a unique Nash equilibrium. Moreover, we manage to construct

the equilibrium payoffs and strategies. Both equilibrium uniqueness and characterization are

useful for applications involving contest design in the presence of spillovers.

2 Additive Spillovers

Our model builds on that of Siegel (2010), to which we add the possibility of performance

spillovers. Consider a contest in which n risk neutral players compete for m homogeneous

monetary prizes, where 0 < m < n.4 The prize value is normalized to 1.5 Denote the set of

players as N = {1, ..., n}. Each player i simultaneously chooses a performance level, or score,

si ≥ 0. Let s = (si)i∈N be the scores of all players, and s−i = (sj)j∈N\{i} be the scores of all

players except i. Given all players’ scores s, player i’s payoff is ui(s) = Pi(s) − Ci(s), where

Pi : Rn
+ → [0, 1] is player i’s probability of winning, and Ci : Rn

+ → R is his cost of score. Note

1See more in Example 1.
2See more in Example 2.
3See Examples 1 and 2.
4Our results can be extended to heterogeneous prizes. For example, Bulow and Levin (2006) and González-

Dı́az and Siegel (2013) study contests with arithmetic prize sequences (with constant first order differences), and
Xiao (2016) studies contests with quadratic prize sequences (with constant second order differences) or geometric
prize sequences (with constant ratios between two consecutive prizes). Equilibrium uniqueness and construction
are established in those contests. By the same argument in this paper, we can generalize those results to the case
of additively separable spillovers.

5Our analysis can be extended to allow players to have asymmetric valuations of the prize.
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whether he wins or not, player i incurs the cost.6 The probability of winning is Pi(s) = 1 if

i’s score si exceeds those of at least n −m other players, Pi(s) = 0 if si is lower than those of

at least m others, and Pi(s) equals any value in [0, 1] otherwise. For each i, Ci(s) is strictly

increasing in si, meaning player i’s score si is costly for him. Note that Ci(s) depends on all

players’ scores, so there may be spillovers. If Ci(s) is independent of s−i, there are no spillovers,

and our setup reduces to that of Siegel (2010).

We assume that the spillovers from other players’ scores enter the cost in an additively

separable way, i.e., Ci(s) = Ki(si)+Hi(s−i) for each i, where Ki : R+ → R+ and Hi : Rn−1
+ → R

may differ among players, representing asymmetry in costs and spillovers respectively. The

contest is of complete information, so these functions are commonly known. Recall that Ci(s) is

strictly increasing in si and Hi(s−i) is independent of si, so Ki(si) is also strictly increasing in si.

Then, assume that there exists smax > 0 such that Ki(smax) > 1 for all i, and define player i’s

reach as ri = K−1i (1), and re-index the players such that r1 ≥ ... ≥ rn.7 We assume ri 6= rm+1

for i 6= m + 1. In addition, assume Ki(0) = 0 and Ki is continuous and piecewise analytic

on [0, rm+1].
8 Moreover, for each j 6= i, Hi(s−i) is piecewise continuous in sj on [0, rm+1].

9

The above contest is referred to as the contest with additive spillover. The following example

illustrates the general model in a linear setup.

Example 1 Suppose the cost is Ci(s) = cisi − hs̄, where ci ∈ R+ is player i’s marginal cost of

score, and s̄ = (
∑n

i=1 si)/n is the average score. Here the spillover depends on the average score,

and h measures the scale of spillover. If h = 0, there is no spillover. If h is positive (negative), a

higher average score makes player i’s score less (more) costly. Assume distinct marginal costs so

that 0 < c1 < ... < cn.10 In this example, Ki(si) = (ci − h/n)si and Hi(s−i) = −h(
∑

j 6=i sj)/n.

The assumption ∂Ci(s)/∂si > 0 requires h < nci for all i.11 Both functions depend on the

spillover parameter h. If h is positive (negative), Ki(si) is lower (higher) than player i’s scoring

cost cisi.

A strategy profile constitutes a Nash equilibrium if each player’s (mixed) strategy assigns a

probability of one to the set of his best responses against the strategies of other players. We

only consider Nash equilibria here.

Equilibrium Characterization In the absence of spillovers, the method of Siegel (2009)

can be used to derive equilibrium payoffs, with which equilibrium strategies can be constructed

6Because of the all-pay feature, the cost is sunk, so it remains the same whether a player wins. As a result,
the spillovers represented by the cost functions also remain the same whether a player wins or not. In contrast,
Baye, Kovenock and de Vries (2012) also consider rank-order spillovers that depend on the rank of a player’s
score, and demonstrate possibly multiple equilibria in the presence of rank-order spillovers.

7The definition of “reach” is first introduced by Siegel (2009).
8A function is piecewise analytic on an interval if the interval can be partitioned into a finite number of closed

intervals such that the restriction of the function to each interval is analytic.
9A function is piecewise continuous on an interval if the function is continuous on all points in the interval

except a finite number of points at which the function has finite limits.
10This is to ensure the assumption that ri 6= rm+1 for i 6= m+ 1 is satisfied.
11Otherwise, with h > nci, it is optimal for player i to choose si = +∞.
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according to the algorithm of Siegel (2010). However, this approach is not applicable here. This

is because with spillovers, we can no longer derive equilibrium payoffs as in the case without

spillovers.

In contrast to Siegel’s method, our method first constructs equilibrium strategies, which

we then use to derive equilibrium payoffs. Given the original contest, consider an auxiliary

contest with the same prizes but different players, whose cost functions are Ki(si) for all i. The

auxiliary contest has no spillover, but it is different from the original contest without spillovers.

For instance, if h = 0 in Example 1, there is no spillover, and a player’s scoring cost is cisi,

which is different from Ki(si) = (ci − h/n)si in the auxiliary contest.

According to Siegel (2010), the auxiliary contest has a unique equilibrium. In this contest,

let Gi : R+ → [0, 1] be the c.d.f. representing player i’s equilibrium strategy, and G = (Gi)i∈N

be the equilibrium. If Gi assigns probability 1 to a single score, it represents a pure strategy.

Lemma 1 (Strategic Equivalence) A strategy profile is an equilibrium in the contest with

additive spillovers if and only if it is an equilibrium in the auxiliary contest.

Proof. In the auxiliary contest, if the other players use strategies G−i = (Gj)j∈N\{i}, player

i’s expected payoff from choosing si is E[Pi(s) − Ki(si)]. In the contest with spillovers, if

the others players use strategies G−i, player i’s expected payoff from choosing si becomes

E[Pi(s) −Ki(si)] − E[Hi(s−i)], where E[Hi(s−i)] =
∫
Hi(s−i)dG−i(s−i) is independent of his

score.12 The independence is a result of the additive separability. Thus, G is also an equilibrium

in the contest with spillovers. Similarly, the converse is also true, i.e., any equilibrium in the

contest with spillovers is also an equilibrium in the auxiliary contest.

The result below shows that the original contest with spillovers also has a unique equilibrium,

and it is the same one constructed in the auxiliary contest.

Proposition 1 The all-pay contest with additively spillovers has a unique equilibrium, which

is the same as the one that the algorithm of Siegel (2010) constructs for the auxiliary contest.

Proof. The strategic equivalence (Lemma 1) implies that G is also an equilibrium in the contest

with spillovers. Moreover, suppose there are multiple equilibria in the contest with spillovers.

Then, according to the strategic equivalence, there are also multiple equilibria in the auxiliary

contest. This is a contradiction because the auxiliary contest has a unique equilibrium.

According to Proposition 1, we can construct the equilibrium in the contest with spillovers

as follows: Given any contest with spillovers, find the corresponding auxiliary contest. Then,

apply the algorithm of Siegel (2010) to construct the equilibrium in the auxiliary contest, and

this constructed equilibrium is also the equilibrium in the contest with spillovers. Below we

illustrate the equilibrium construction for Example 1.

12According to Siegel (2010), each player j’s equilibrium strategy Gj is continuous with a finite sup-
port. Moreover, Hi is piecewise continuous so is bounded over the supports of G−i. Hence, E[Hi(s−i)] =∫
Hi(s−i)dG−i(s−i) < +∞.

4



Example 1 (continued) In the auxiliary contest, player i’s cost function is Ki(si) = (ci −
h/n)si. Denote the new marginal cost as ĉi ≡ ci − h/n. In the equilibrium of this contest

characterized by Siegel (2010), player i = m + 2, ..., n chooses si = 0 with probability 1, and

player j = 1, ...,m + 1 mixes over an interval [slj , s
l
0], where slm = slm+1 = 0, sl0 = 1/ĉm+1

and slj = 1/ĉm+1 − ĉm−jj /(Πm+1
k=j+1ĉk) for j = 1, ...,m − 1. Over the interval [slj , s

l
j−1], the

equilibrium strategy of player i ∈ {j, ...,m+ 1} is Gi(si) = 1− (1/ĉm+1− si)1/(m+1−j)βij, where

βij = (Πm+1
k=j ĉ

1/(m+1−j)
k )/ĉi.

13 Proposition 1 implies the above strategy profile is also the unique

equilibrium in the original contest with spillovers. Notice that a player’s score also affects the

average score, so h changes the marginal cost of a player’s own score. As a result, h also affects

the equilibrium strategies.

To illustrate the effect of spillovers through the average score, we compare the equilibrium

in the contest with spillovers to the equilibrium in a contest without. Suppose there is one prize

and two players, so m = 1 and n = 2. If h = 0, there is no spillover, and the equilibrium

strategies are

G1(s; 0) = c2s

G2(s; 0) = c1s+ 1− c1
c2

In contrast, if h > 0, there are positive spillovers, and the equilibrium strategies become

G1(s;h) = (c2 − h/2)s

G2(s;h) = (c1 − h/2)s+ 1− c1 − h/2
c2 − h/2

Note that the spillovers affect the players differently. Player 1’s strategy with positive spillovers

first order stochastically dominates that without. In contrast, player 2’s strategy with spillovers

intersects with that without.

Although the contest with spillovers has the same equilibrium as the auxiliary contest,

the associated equilibrium payoff for a player may differ. This is because positive (negative)

spillovers from other players’ performance bring additional benefits (costs) to a player. In the

auxiliary contest, let ûi be player i’s equilibrium payoff. Then, the result below characterizes

the equilibrium payoffs in the contest with spillovers.

Proposition 2 In an all-pay contest with additive spillovers, the equilibrium payoff of each

player i is u∗i = ûi − E[Hi(s−i)].

Proof. As in the proof of Lemma 1, given the same equilibrium G, the expected payoff of

player i in the contest with spillovers is E[Hi(s−i)] lower than that in the auxiliary contest.

Hence, u∗i = ûi − E[Hi(s−i)].

13The expressions of Gi(si) and slj are obtained by substituting Vi = 1, γi = ĉi, α = 1, c(y) = y and ai = ĉi
into (11) and (12) of Siegel (2010).
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Example 1 (continued) Here we derive the equilibrium payoffs for Example 1. In the auxiliary

contest, according to Siegel (2009), the equilibrium payoffs are ûi = 1 − ĉi/ĉm+1 = 1 − (nci −
h)/(ncm+1 − h) for players i = 1, ...,m, and ûi = 0 for players i = m + 1, ..., n. Recall that

Hi(s−i) = −h(
∑

j 6=i sj)/n, so Proposition 2 implies that the equilibrium payoffs in the contest

with spillovers are u∗i = ûi + h(
∑

j 6=iE[sj ])/n, where E[sj ] is player j’ expected scores in the

equilibrium constructed above.

Next, we compare the equilibrium payoffs with spillovers to those without. Suppose m = 1

and n = 2. If h = 0, there is no spillover, and the equilibrium payoffs are

u1(0) = 1− c1/c2

u2(0) = 0

If h > 0, there is positive spillover, and the equilibrium payoffs become

u1(h) = 1− c1 − h/2
c2 − h/2

+
h(c1 + c2 − h)

4(c2 − h/2)2

u2(h) =
h(c1 + c2 − h)

4(c2 − h/2)2

Notice that the positive spillovers increase both players’ equilibrium payoffs, but it increases

player 1’s payoff more than player 2’s. If h < 0, there is negative spillover, and player 2’s

equilibrium payoff u2(h) becomes negative.

3 Multiplicative Spillovers

Economists study two-player contests in many contexts including internal labor market tourna-

ments (e.g. Lazear and Rosen (1981)), military conflicts (e.g. Fearon (1995)), and political cam-

paigns (e.g. Che and Gale (1998)).14 In this section, we consider a contest with one prize of value

1 and two players 1 and 2, where we use i to represent one player and j the other. The model is

the same as in Section 2 except that the spillover from the other player’s performance enters a

player’s performance cost in a multiplicatively separable way, i.e., Ci(s) = Ki(si) +Li(si)Qi(sj)

for each i, where Ki, Li : R+ → R+ represent asymmetry in costs and Qi : R+ → R+ represents

asymmetry in spillovers.15

We assume that there is smax > 0 such that Ki(smax) > 1, so it is never optimal for a player

to choose a score above smax. In addition, Ki, Li and Qi are continuous, and Ki and Li are

piecewise analytic and strictly increasing over [0, smax]. We also assume Ki(0) = Li(0) = 0,

so it is costless to choose score 0. Notice that Ki and Li are strictly increasing and Qi(sj)

is nonnegative, so Ci(s) = Ki(si) + Li(si)Qi(sj) is strictly increasing in si. There are positive

spillovers if Qi(sj) is decreasing in sj , negative spillovers if it is increasing in sj , and no spillovers

14See Chapter 1.2 of Konrad (2009) for more applications.
15The term Ki(si) is needed to accommodate the cost function in Example 2. However, the analysis below

also applies to Ci(s) = Li(si)Qi(sj), where Qi(sj) ≥ q
i
> 0.
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if it is constant. The above game is referred to as the two-player contest with multiplicative

spillovers.

Example 2 Suppose each player i has a cost function Ci(s1, s2) = cisi(α+ βs̄), where s̄ is the

average score and ci, β > 0, α ≥ 0. Then, the average or the aggregate score affects a player’s

marginal scoring cost. In this example, Ci(s1, s2) = Ki(si) + Li(si)Qi(sj), where Ki(si) =

αcisi + βcis
2
i /2, Li(si) = βcisi/2 and Qi(sj) = sj.

Due to the multiplicative part Li(si)Qi(sj) in the cost function, the method for additive

spillovers no longer applies. To see why, recall that a contest with additive spillovers is strategic

equivalent to an auxiliary contest without spillovers. As a result of the strategic equivalence, we

can use the results in the contests without spillovers, such as equilibrium uniqueness and con-

struction, to analyze the contests with additive spillovers. In contrast, the strategic equivalence

no longer holds for multiplicative spillovers because it is no longer straightfoward to find the

auxiliary contest. Indeed, we need to solve a fixed point of a self-mapping to find the auxiliary

contest, which makes the analysis in this section much more involved than that in the previous

section.16

Next, we introduce an auxiliary contest and use it to define a self-mapping, which is used

to characterize the equilibrium. Denote q̄i = maxsj∈[0,smax]Qi(sj). Given any (q1, q2) ∈ [0, q̄1]×
[0, q̄2], consider an auxiliary contest with the same prize and two players with cost functions

Ki(si) + Li(si)qi for i = 1, 2. Because qi is constant, there is no spillover in the auxiliary

contest. As a result, we can use the method of Siegel (2010) to derive the unique equilibrium.

Specifically, player i’s reach ri(qi) solves Ki(ri(qi)) + Li(ri(qi))qi = 1 and the threshold is

T (q1, q2) = min(r1(q1), r2(q2)). Then, the equilibrium payoff is ui(q1, q2) = 1−Ki(T )−Li(T )qi

for player i = 1, 2. The equilibrium strategy Gi(·; q1, q2) satisfies

Gi(sj ; q1, q2)−Kj(sj)− Lj(sj)qj = uj(q1, q2) (1)

which means given Gi(·; q1, q2), player j receives his equilibrium payoff by choosing sj . There-

fore, Gi(s; q1, q2) = uj(q1, q2) +Kj(sj) + Lj(sj)qj . Then, we can define a mapping Φ : [0, q̄1]×
[0, q̄2]→ [0, q̄1]× [0, q̄2] such that

Φ(q1, q2) = (E[Q1(s2)|G2(·; q1, q2)], E[Q2(s1)|G1(·; q1, q2)])

where

E[Qi(sj)|Gj(·; q1, q2)] =

∫ T

0
Qi(s)dGj(s; q1, q2) (2)

is the expectation of Qi(sj) given player j’s mixed strategy Gj(·; q1, q2).
16More precisely, we define a family of auxiliary contests with parameters (q1, q2). After finding the unique

fixed point (q∗1 , q
∗
2), we can pin down an auxiliary contest using the parameter values (q∗1 , q

∗
2).
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For i = 1, 2, let r̂i be the unique solution of

1−Ki(r̂i)

Li(r̂i)

(
1−

∫ r̂i

0
Qi(s)dLi(s)

)
=

∫ r̂i

0
Qi(s)dKi(s) (3)

in the interval [0, smax].17 Without loss of generality, rename the players so that r̂1 ≥ r̂2. The

following result establishes a link between equilibria in the the original contest and fixed points

of mapping Φ.

Lemma 2 If {G1, G2} is an equilibrium in the two-player contest with multiplicative spillovers,

then (E[Q1(s2)|G2], E[Q2(s1)|G2]) is a fixed point of Φ. If (q1, q2) is a fixed point of Φ, then

{G1(·; q1, q2), G2(·; q1, q2)} is an equilibrium of the contest.

Proof. Suppose {G1, G2} is an equilibrium of the original contest with multiplicative spillovers.

Given the other player’s strategy Gj , player i’s payoff from choosing si in the original contest

is Gj(si) − Ki(si) − Li(si)E[Qi(sj)|Gj ], which is the same as Gj(si) − Ki(si) − Li(si)qi, his

payoff from choosing si in auxiliary contest with q1 = E[Q1(s2)|G2] and q2 = E[Q2(s1)|G1].

Hence, {G1, G2} is also an equilibrium in the auxiliary contest. Then, the definition of Φ implies

Φ(q1, q2) = (E[Q1(s2)|G2], E[Q2(s1)|G1]), so (E[Q1(s2)|G2], E[Q2(s1)|G1]) is a fixed point of Φ.

Suppose (q1, q2) is a fixed point of Φ. In the auxiliary contest, {G1(·; q1, q2), G2(·; q1, q2)} is

an equilibrium, which means, given the other player’s strategy Gj(·; q1, q2), player i does not

deviate from Gi(·; q1, q2). Then, given the other’s strategy Gj(·; q1, q2), player i’s payoff from

choosing si in the original contest is Gj(si, q1, q2)−Ki(si)−Li(si)E[Qi(sj)|Gj(·; q1, q2)], which

equals to Gj(si, q1, q2)−Ki(si)− Li(si)qi, his payoff from choosing si in the auxiliary contest,

because E[Qi(sj)|Gj(·; q1, q2)] = qi due to the definition of fixed points. Therefore, player i does

not deviate from Gi(·; q1, q2) either, which means {G1(·; q1, q2), G2(·; q1, q2)} is an equilibrium

in the original contest.

As a result, if we find a unique fixed point of Φ, we also find a unique equilibrium in the

original contest. The following result characterizes the unique equilibrium.

Proposition 3 The two-player contest with multiplicative spillovers has a unique equilibrium.

In the equilibrium, the payoff is u∗1 = 1−K1(r̂2)− L1(r̂2)q
∗
1 for player 1 and u∗2 = 0 for player

2, player i’s strategy is Gi(si) = u∗j +Kj(si) + Lj(si)q
∗
j for si ∈ [0, r̂2], where

q∗1 =
Q1(0)(1−K1(r̂2)) +

∫ r̂2
0 Q1(s)dK1(s)

1 + L1(r̂2)Q1(0)−
∫ r̂2
0 Q1(s)dL1(s)

(4)

q∗2 =

∫ r̂2
0 Q2(s)dK2(s)

1−
∫ r̂2
0 Q2(s)dL2(s)

(5)

17To see why there is a unique solution, notice that if r̂i → 0, the left hand side (LHS) of (3) goes to +∞, which
is larger than the right hand side (RHS). In contrast, if r̂i = smax, the LHS is negative therefore smaller than the
RHS. Hence, (3) has at least one solution. Notice that the LHS of the above equation is strictly decreasing in r̂i
while the RHS is weakly increasing, so (3) has a unique solution.

Although Li and Ki may not be differentiable, the integrals are well-defined because Li and Ki are piecewise
analytic.
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Proof. We first verify the above equilibrium. In the auxiliary contest with q∗1 and q∗2, the

equilibrium strategy Gi is as described in the proposition. Then,

E[Q1(s2)|G2] =

∫ r̂2

0
Q1(s2)dG2(s2)

= Q1(0)G2(0) +

∫ r̂2

0
Q1(s2)d(K1(s2) + q∗1L1(s2))

= Q1(0)(1−K1(r̂2)− L1(r̂2)q
∗
1) +

∫ r̂2

0
Q1(s)d(K1(s) + q∗1L1(s)) (6)

= q∗1

where the second equality is from the possible atom of G2 at 0, the third from G2(0) = u∗1 =

1−K1(r̂2)− L1(r̂2)q
∗
1, and the last from (4).18 In addition,

E[Q2(s1)|G1] =

∫ r̂2

0
Q2(s)d(K2(s) + q∗2L2(s)) = q∗2

where the second equality is from (5). Hence, (q∗1, q
∗
2) is a fixed point of Φ, so, according to

Lemma 2, the above strategies constitute an equilibrium in the original contest.

To prove the equilibrium uniqueness in the original contest, it is sufficient to show that Φ has

a unique fixed point. Suppose (q1, q2) is a fixed point of Φ. First, we show that r1(q1) ≥ r2(q2) in

the auxiliary contest with q1 and q2. To see why, suppose otherwise that r1(q1) < r2(q2). Then,

in the auxiliary contest, the threshold is T = min{r1(q1), r2(q2)} = r1(q1) and the equilibrium

payoffs are u1(q1, q2) = 0 and u2(q1, q2) = 1−K2(r1(q1))− L2(r1(q1))q2. Moreover, (1) implies

the equilibrium strategies are

G1(s; q1, q2) = K2(s) + L2(s)q2 + u2(q1, q2)

G2(s; q1, q2) = K1(s) + L1(s)q1

Therefore,

E[Q1(s2)|G2(·; q1, q2)] =

∫ r1(q1)

0
Q1(s)d(K1(s) + q1L1(s))

E[Q2(s1)|G1(·; q1, q2)] = Q2(0)u2(q1, q2) +

∫ r1(q1)

0
Q2(s)d(K2(s) + q2L2(s2))

where the second equation is from the same calculation to obtain (6). Hence, (q1, q2) = Φ(q1, q2)

is equivalent to

q1 =

∫ r1(q1)

0
Q1(s)d(K1(s) + q1L1(s)) (7)

q2 = Q2(0)u2(q1, q2) +

∫ r1(q1)

0
Q2(s)d(K2(s) + q2L2(s)) (8)

18The strategy G2 has an atom at 0, i.e., G2(0) > 0, if and only if u∗1 > 0.
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where u2(q1, q2) = 1 − K2(r1(q1)) − L2(r1(q1))q2. Recall that the definition of ri(qi) requires

Ki(ri(qi)) + Li(ri(qi))qi = 1, so we can express qi as a function of ri(qi). Substituting this

expression of qi into (7) and (8) and rearranging terms, we obtain an equation system about

r1(q1) and r2(q2):

1−K1(r1)

L1(r1)

(
1−

∫ r1

0
Q1(s)dL1(s)

)
=

∫ r1

0
Q1(s)dK1(s) (9)

1−K2(r2)

L2(r2)

(
1−

∫ r1

0
Q2(s)dL2(s)

)
= Q2(0)

(
1−K2(r1)− L2(r1)

1−K2(r2)

L2(r2)

)
+

∫ r1

0
Q2(s)dK2(s) (10)

where we omit the arguments of r1(q1) and r2(q2). Notice that (9) is the same as (3), so

r1(q1) = r̂1. Recall that r̂1 ≥ r̂2 and r1(q1) < r2(q2), so r2(q2) > r1(q1) ≥ r̂2. Therefore,

Right hand side of (10) ≥
∫ r1

0
Q2(s)dK2(s) ≥

∫ r̂2

0
Q2(s)dK2(s)

where the first inequality is from 1 − K2(r1) − L2(r1)(1 − K2(r2))/L2(r2) > 0 ensured by

r2(q2) > r1(q1), and the second inequality is due to r1(q1) ≥ r̂2. In addition, r2(q2) > r1(q1) ≥ r̂2
implies (1−K2(r̂2))/L2(r̂2) > (1−K2(r2))/L2(r2). Thus,

Left hand side of (10) <
1−K2(r̂2)

L2(r̂2)

(
1−

∫ r̂2

0
Q2(s)dL2(s)

)
=

∫ r̂2

0
Q2(s)dK2(s)

where the equality is from the definition of r̂2 in (3). Therefore, (10) is violated, which is a

contradiction.

As a result, we must have r1(q1) ≥ r2(q2) if (q1, q2) is a fixed point. Then, in the auxiliary

contest, the threshold is T = r2(q2). Repeating the above analysis, we obtain an analogue of

(9),

1−K2(r2(q2))

L2(r2(q2))

(
1−

∫ r2(q2)

0
Q2(s)dL2(s)

)
=

∫ r2(q2)

0
Q2(s)dK2(s)

which is the same as (3), so r2(q2) = r̂2. Then, repeating the analysis that derives (7) and (8),

we obtain their analogues:

q2 =

∫ r̂2

0
Q2(s)d(K2(s) + q2L2(s))

q1 = Q1(0)[1−K1(r̂2)− L1(r̂2)q1] +

∫ r̂2

0
Q1(s)d(K1(s) + q1L1(s))

whose unique solution is (q∗1, q
∗
2) described in (4) and (5). Therefore, there cannot be other fixed

points of Φ.

Example 2 (continued) Next, we derive the equilibrium strategies for c1 = (
√

105 − 9)/4,
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c2 =
√

105 − 9, α = 0 and β = 1. With these parameter values, Ci(s1, s2) = cisi(α + βs̄) =

cisis̄ = cis
2
i /2 + cisisj/2, so Ki(si) = cis

2
i /2, Li(si) = cisi/2 and Qi(sj) = sj. Substituting the

function forms into (3), we obtain

2− cir̂2i
cir̂i

(
1− cir̂

2
i

4

)
=

cir̂
3
i

3

whose solutions are r̂1 = 2 and r̂2 = 1. Then, we can rewrite (4) and (5) as

q∗i =

∫ 1
0 (cis

2)ds

1−
∫ 1
0 (cis/2)ds

=
ci/3

1− ci/4

for i = 1, 2. Therefore, according to Proposition 3, the equilibrium payoffs are u∗1 = 1−K1(1)−
L1(1)q∗1 = 1− c1(12+c1)

6(4−c1) ≈ 0.83 and u∗2 = 0, and the equilibrium strategies are

G∗1(s) =
c2
2
s2 +

c2
2

c2/3

1− c2/4
s

G∗2(s) =
c1
2
s2 +

c1
2

c1/3

1− c1/4
s+ u∗1

Three or More Players With multiplicative spillovers, if there are m ≥ 1 identical prizes

and n ≥ 3 players, we can no longer solve the equilibrium payoffs and strategies explicitly

using the above method. Given q1, ..., qn, we can still introduce an auxiliary contest similarly.

However, two difficulties arise: First, unlike the two-player case, some players may choose zero

score with certainty, and it is difficult to determine who they are.19 Second, if we can determine

the actively competing players, the equilibrium strategies in the auxiliary contest may be very

complicated. For example, Siegel (2010) shows gaps in the support of the mixed strategies.

This makes it difficult to derive the explicit expression of Φ as in (7) and (8), so it is difficult

to solve the fixed points of Φ.
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